Photosynthetic biogas upgrading to biomethane: Influence of the gas-liquid flow configuration in the absorption column on the biomass production and nutrients recovery

Alma Toledo-Cervantes, Cindy Madrid, Esther Posadas, Raquel Lebrero and Raúl Muñoz

Department of Chemical Engineering and Environmental Technology, University of Valladolid, Spain
Introduction

Anaerobic digestion

The most valuable byproduct from anaerobic digestion

Animal manure

Crops

Food waste

Sludge WWTP

ANAEROBIC DIGESTER

BIOGAS

CH_4 (40–75%)

CO_2 (25–60%)

H_2S (0.005–2%)

$\text{N}_2, \text{O}_2, \text{H}_2$ and VOCs (trace level concentrations)

The most valuable byproduct from anaerobic digestion

BIOFERTILIZER

- NH_4^+ emission
- NO_3^- leaching
- P soil saturation

Digestate

Food waste

Animal manure

Crops

Sludge WWTP

WC
Introduction

Biogas: a renewable energy source

- Households heat
- Electricity & industrial heat
- Fuel cells
- Injection into natural gas grids
- Fine & bulk chemical bioconversion
- Vehicle fuel
Biogas production in Europe

- Number of biogas plants and total installed capacity in Europe (2010-2014)

- Production of Biogas in the EU28 will reach 18-20 billions Nm³ by 2030 (EBA)

 ➔ 3-4% Natural gas consumption in EU

- Biogas Electricity 63.6 TWh

- BIOGAS UPGRADING
Biomethane injection into natural gas grids or used as vehicle fuel

| Table 1. Technical specifications for injection of biogas in natural gas grid and use as a vehicle fuel (Marcogaz, 2006; Persson et al, 2006; Huguen and Le Saux, 2010; INN, 2010; Bailón and Hinge, 2012; BOE, 2013; Svensson, 2014). |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Country | Sweden | Switzerland | Germany | France | Austria | Netherlands | Spain | Belgium | Czech Rep |
| CH₄ content (%) | 97±1 (Type A) | > 96 (Type B) | > 96 | > 95 | > 95 | > 85 | > 95 | > 95 | U.S. |
| | 97±2 (Type B) | > 50 | > 80 | > 85 | > 85 | > 88 | | | |
| Wobbe index (MJ Nm⁻³) | 44.7–46.4 (unlimited injection) | 47.9–56.5 | 46.1–56.5 | 48.2–56.5 | 47.7–56.5 | 43.46–44.41 | 13.40–16.06 kWh m⁻³ (48.25–57.81 MJ m⁻³) | 47.6–51.6 | 47.28–52.72 |
| Water dew point (°C) | < 8 (at 200 bar) | -8 at MOP | -5 at MOP (40 bar) | -8 | -10 | 2°C at 7 bar | < -10°C | |
| Water content max. (mg Nm⁻³) | < 32 | < 32 | | | | | | |
| CO₂ (%) | < 4 (Type A) | < 6 (Type B) | < 6 | < 2.5 (Type B) | < 2 | < 6 | < 10–10.3 for regional grid | 2.5 | 2.5 | 5 | 3 |
| O₂ (%) | < 1 | < 0.5 | < 3 | < 0.01 (Type B) | < 0.5 | < 0.5 | 0.01 (0.3) | < 0.5 | < 0.2 | < 1 |
| CO₂+O₂+N₂ (%) | < 4 (Type A) | < 5 (Type B) | < 5 | < 5 | < 5 | < 5 | < 5 (CO₂+O₂+N₂) | 1.5–4.5 |
| H₂S (mg Nm⁻³) | < 15.2 | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | < 7 | 88 |
| Total sulfur (mg Nm⁻³) | < 23 | < 30 | < 30 | < 30 | < 45 | 50 | < 30 | < 30 | < 265 |
| Mercaptans (mg m⁻³) | < 5 | < 6 | < 6 | < 6 | < 10 | 17 | < 6 | < 5 | 106 |
Biogas upgrading: CO$_2$ and H$_2$S removal

- Costs of compression and transportation decrease.
- Specific calorific value increases.

CO$_2$ removal technologies

- Not effective for H$_2$S.
- High environmental impact.
- High investment and operating costs.

(Bauer et al. 2013)
Biogas upgrading: \(\text{CO}_2 \) and \(\text{H}_2\text{S} \) removal

- Toxic
- Malodorous
- Corrosion of pipelines, engines, and storage structures

\(\text{H}_2\text{S} \) removal

H\(_2\text{S} \) removal technologies

1. **AT THE SOURCE**
 - Not realistic
 - Remove source of S

2. **END-OF-PIPE**
 - Physical-chemical techniques
 - Biological techniques
 - Not effective for \(\text{CO}_2 \) Contamination of biogas with \(\text{O}_2 \)

3. **AT PROCESS LEVEL**
 - Selective inhibitors of sulphidogenic bacteria
 - Raising the pH
 - Sulphide precipitation
 - Microaerobic

\(\text{ANAOBIC DIGESTER} \)

Sulphide
Photosynthetic biogas upgrading

ALGAL-BACTERIAL PROCESSES

Simultaneous biogas upgrading and nutrient recovery from digestate

Key operational parameter: Recycling Liquid/Biogas configuration

Co-current or counter-current?

High rate algal pond (HRAP) interconnected to an external absorption column (AC):

- **Treated digestate**
- **O₂-free CH₄ (g)**
- **CO₂ (L)**
- **H₂S (L)**
- **Microalgae Biomass**

RAW BIOGAS

- **CH₄ (g)**
- **CO₂ (L)**
- **H₂S (L)**

BIOENERGY

Biomethane

Digestate

Upgraded biogas

Absorption column

Microalgae recycling

Treated Water

Harvested biomass

Sedimentation tank

Treated digestate
Objectives

Photosynthetic biogas upgrading to biomethane: co-current vs. counter-current

Objective 1

Comparison of the influence of the gas/liquid flow configurations: **co-current and counter-current**

→ biomethane quality
→ nutrient recovery

Objective 2

Application of an **innovative operational strategy** based on decoupling the hydraulic retention time (HRT) from the solids retention time (SRT) to maximize

→ nutrient recovery in the harvested biomass
→ the control of the biomass concentration in the HRAP

Objective 3

Minimization of effluent to reduce the loss of carbon and nutrients in the treated effluent
Experimental set-up and operation

Liquid recirculation velocity: **20 cm/s**
Cultivation surface: **1.21 m²**

Light intensity: **1500 ± 600 µmol/m²/s**
Light /dark cycles: **14 : 10 hours**

- **CH₄** (70%)
- **CO₂** (29.5%)
- **H₂S** (0.5%)
- **IC** (1500±168 mg L⁻¹)
- **COD** (1745±413 mg L⁻¹)
- **NH₄⁺** (1668±249 mg L⁻¹)
- **TN** (1815±109 mg L⁻¹)
- **TP** (48±2 mg L⁻¹)
- **SO₄²⁻** (15±2 mg L⁻¹)

Materials & Methods

Experimental set-up and operation

- Liquid recirculation velocity: **20 cm/s**
- Cultivation surface: **1.21 m²**

- Light intensity: **1500 ± 600 µmol/m²/s**
- Light /dark cycles: **14 : 10 hours**

Chemifloc CV-300
- **120 mg/L**

TAP WATER

Diagram

- Absorption column
- Counter-current flow
- Cultivation broth recycling
- Co-current flow
- Biogas
- Digestate
- 1 L/d
- Effluent: 0.5 L/d
- L/G=1
- 1.6 m³/m²/h
- Bio-methane
- HRAP
- LED PCBs
- Biomass harvesting
- Coagulation-flocculation tank
- Biomass-free effluent
- Biomass-free cultivation broth recycling
- LED PCBs
- TAP WATER
- Chemifloc CV-300
- 120 mg/L
Experimental set-up and operation

STAGE 1

- CO-CURRENT: 94 days

STAGE 2

- COUNTER-CURRENT: 110 days
Operating conditions under co-current and counter-current flow configurations

Time course of the total suspended solids concentration in the HRAP

- Prevention of mutual shading by the high light irradiance
- Stabilization of the microalgae culture
- Absence of Mg limitation
- Microalgae growth limitation by trace metal availability due to their precipitation as sulphur-salts: O₂ deprivation
- Chlorella predation

Results & Discussion

- Co-current flow steady state
 - TSS: 2.6 g/L
 - Biomass productivity: 15 g/m²/d
 - pH: 10.2 ± 0.5
 - DO: 15.9 ± 1.6 mg/L

- Counter-current flow steady state
 - TSS: 1.4 g/L
 - Biomass productivity: 8.7 g/m²/d
 - pH: 9.5 ± 0.1
 - DO: 13.3 ± 1.1 mg/L

Micronutrients: Mg (20 mg L⁻¹), P (4 mg L⁻¹)
Digestate treatment under co-current and counter-current flow configurations

Digestate treatment: organic matter, inorganic carbon and nutrient removal efficiencies (RE)

<table>
<thead>
<tr>
<th></th>
<th>Stage I</th>
<th>Stage II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (%)</td>
<td>88±4</td>
<td>57±5</td>
</tr>
<tr>
<td>Nitrogen (%)</td>
<td>64±7</td>
<td>45±12</td>
</tr>
<tr>
<td>Phosphorus (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sulfur (%)</td>
<td>38</td>
<td>24</td>
</tr>
</tbody>
</table>

Effluent concentrations: N-NO$_2^-$, N-NO$_3^-$ and SO$_4^{2-}$

Effluent flow rate: 0.5 L/d

LOW ENVIRONMENTAL IMPACT IN TERMS OF WASTEWATER DISCHARGE TO THE ENVIRONMENT
Biogas upgrading under co-current and counter-current flow configurations

CO₂ removal efficiency

STAGE 1

→ CO-CURRENT: $98.8 \pm 0.8\%$

STAGE 2

→ COUNTER-CURRENT: $96.9 \pm 1.6\%$

CO₂ removal

CO₂ removal highly depends on the photosynthetic activity of microalgae in spite of the high buffer capacity of the digestate.

H₂S removal efficiency:

≈ 100% regardless of the flow configuration

H₂S removal

H₂S removal highlighted the robustness of this biological technology for H₂S abatement.

Decrease in the pH mediated by the decrease in microalgae activity.
Results & Discussion

Biogas upgrading under co-current and counter-current flow configurations

Bio-methane composition under co-current and counter-current flow

<table>
<thead>
<tr>
<th>Nº stage</th>
<th>CO₂ (%)</th>
<th>O₂ (%)</th>
<th>N₂ (%)</th>
<th>CH₄ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGE I</td>
<td>0.4 ± 0.3</td>
<td>0.7 ± 0.4</td>
<td>2.7 ± 0.5</td>
<td>96.2 ± 0.7</td>
</tr>
<tr>
<td>STAGE II</td>
<td>0.9 ± 0.3</td>
<td>1.2 ± 0.3</td>
<td>2.6 ± 0.3</td>
<td>95.1 ± 0.2</td>
</tr>
</tbody>
</table>

Steady state

H₂S oxidation

SIMILAR VALUES DUE TO THE OPERATION AT THE SAME L/G RATIO
Conclusions

Photosynthetic biogas upgrading to biomethane: co-current vs. counter-current

- Counter-current operation decreased biomass productivity and the cultivation broth pH

- High C, N, P and S recoveries were achieved by decoupling the HRT from the SRT and by working at low effluent rate

- Successful nutrient recovery from the digestate regardless of the operational conditions

- EU standard bio-methane was obtained regardless of the gas-liquid flow configuration

- First systematic comparison addressing the influence of the biogas-recycling liquid flow configuration on bio-methane composition
THANK YOU FOR YOUR ATTENTION!

More information:

http://iqtma.uva.es/envtech/
http://gastreatment-microalgaeresearchgroup.blogspot.com.es/

Raúl Muñoz: mutora@iq.uva.es